Plants Modify Biological Processes to Ensure Survival following Carbon Depletion: A Lolium perenne Model

نویسندگان

  • Julia M. Lee
  • Puthigae Sathish
  • Daniel J. Donaghy
  • John R. Roche
چکیده

BACKGROUND Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures) generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation). In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS Perennial ryegrass (Lolium perenne L.) was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001) in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decrease in the Photosynthetic Performance of Temperate Grassland Species Does Not Lead to a Decline in the Gross Primary Production of the Ecosystem

Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a ...

متن کامل

Short-term changes in xylem N compounds in Lolium perenne following defoliation.

Previous studies have indicated that an increased asparagine to glutamine ratio (Asn : Gln) occurs in the xylem fluid of Lolium perenne 24 h after defoliation. However, the absolute changes in Asn and Gln leading to the increased Asn : Gln ratio are unknown. The present study tested the hypotheses that: (1) defoliation-induced changes in xylem amino acid composition occur in L perenne within th...

متن کامل

Ice‐binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana

Lolium perenne is a freeze-tolerant perennial ryegrass capable of withstanding temperatures below -13 °C. Ice-binding proteins (IBPs) presumably help prevent damage associated with freezing by restricting the growth of ice crystals in the apoplast. We have investigated the expression, localization and in planta freezing protection capabilities of two L. perenne IBP isoforms, LpIRI2 and LpIRI3, ...

متن کامل

New Benefits of Endophyte- Infected Grasses Emerge

Endophytes can provide enhanced drought tolerance, summer survival, and insect and disease resistance to grasses. Endophytes are fungi belonging to the genus Neotyphodium that live in the leaves and stems of grasses and are carried from plant to plant only through seed. These fungi do not cause any disease in the grasses, but under most circumstances they are beneficial to the growth and surviv...

متن کامل

Effects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation.

The stay-green mutation of the nuclear gene sid results in inhibition of chlorophyll degradation during leaf senescence in grasses, reducing N remobilization from senescing leaves. Effects on growth of Lolium perenne L. were investigated during N starvation (over 18 d) and after severe defoliation, when leaf growth depends on the remobilization of internal N. Rates of dry mater production, part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010